Bewegung ist im Leben nicht alles – doch ohne Bewegung ist alles nichts!

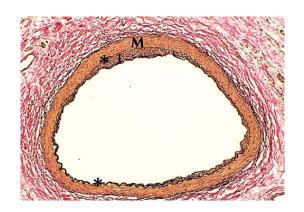
Gesundheitstipps für ein 'bewegtes' langes Leben auch bei Krankheit und Behinderung

Priv.-Doz. Dr. med. habil. Dr. iur. Heiko Striegel Medizinische Universitätsklinik Tübingen Abteilung Sportmedizin

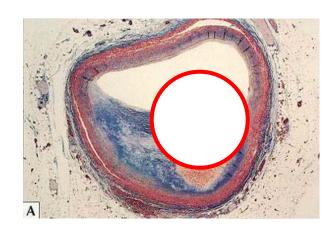
334 Jahre...

interkulturell...

Sportart übergreifend...


Einleitung

- Bedeutung des Sports in der Gesellschaft
- Leistungs- und Breitensport
- Präventive Bedeutung des Sports
- > Behindertensport


Prävention

Primär- und Sekundärprävention

Das höchste Ziel sollte die <u>Primärprävention</u> sein, also das Vorbeugen und Verhüten von Krankheit

Durch <u>Sekundärprävention</u> wird, sollte es bereits zur Manifestation, also zum Vorliegen von Krankheit gekommen sein, das Fortschreiten verlangsamt oder verhindert.

Kardiovaskuläres Risikomanagement in der Primärprävention

Nicht beeinflussbare Risikofaktoren

- Alter (Risiko steigt mit zunehmendem Alter)
- Geschlecht (Risiko ist bei Männern höher)
- Familiäre Vorbelastung

Beeinflussbare Risikofaktoren

- Übergewicht
- Bluthochdruck
- Erhöhte Blutfettwerte (Cholesterin)
- Rauchen
- Übermäßiger Alkoholkonsum
- Diabetes mellitus
- Ungenügende körperliche Bewegung

Körperliche Aktivität und Gesamtmortalität

rafik 1 Autor und Zitierung	Follow-up (Jahre)	Anzahi	Relatives Risiko 0,4 0,6 0,8 1
Sandvik N Engl J Med 1993; 328: 553–557	16	1 960	
Sherman Am Heart J 1999; 138: 900–907	16	5 209	
Paffenbarger N Engl J Med 1993; 328: 538-545	8	10 269	
Rosengren Ann Epidemiol 1997; 7: 69-75	20	7 142	
Cushi JAMA 1997; 277 : 1287-1292	7	40 417	
Fried JAMA 1998; 279: 585-588	5	5 886	
Hedblad Arch Int Med 1997; 157: 893-899	25	642	<u> </u>
Villeneuve Epidemiology 1996; 9: 626–631	16	14 442	
Shaper Br Heart J 1991; 66: 384-394	8	7735	
Lee JAMA 1995; 27 3: 1179-1184	22-26	17 321	· · · · · · · · · · · · · · · · · · ·
Lee Circulation 2000; 102: 981–986	5	7 307	<u> </u>
Schnohr BMJ 2000; 321: 602–608	22	9 698	
Eriksen Lancet 1998; 352:759-762	13	2 014	
Cujala JA MA 1998; 279: 440–444	17	15 902	
Wannamathee Lancet 1998; 351: 1603-1608	4	7735	<u> </u>
Wannamathee BMJ 1992; 304: 597-601	9,5	7 630	
Bijnen JAMA 1996; 276: 241–246	10	802	
Lissner Am J Epidemiol 1996; 143: 54–60	20	1 405	
Caplan Am J Epidemiol 1996; 144: 793–797	28	6131	·
Leon Int J Epidemiol 1991; 20: 690–697	10,5	12 138	
Sesso Circulation 2000; 102: 975–980	16	12 516	
Morris Br Heart J 1990; 63: 325–334	9	9 376	
Leon Int J Sports Med 1997; 18: 5 208-5 215 (Suppl. 3)	16	12 138	
Wannamathee Arch Intern Med 1996; 158: 2 433-2 440	15	7 142	
.aCroix J.A.m Genatr Soc 1996; 44: 113–120	8	1 645	
Lemaitre Arch Intern Med 1999; 159: 686–690	6	333	
Haapanen Am J Epidemiol 1996; 143: 870-880	11	10 072	
Hein J Int Med 1992; 232: 471–479	17	4 999	
Blair JAMA 1995; 273: 1093-1098	10	9777	
Burke JA m Geriatr Soc 2001; 49: 254-262	7	5 888	

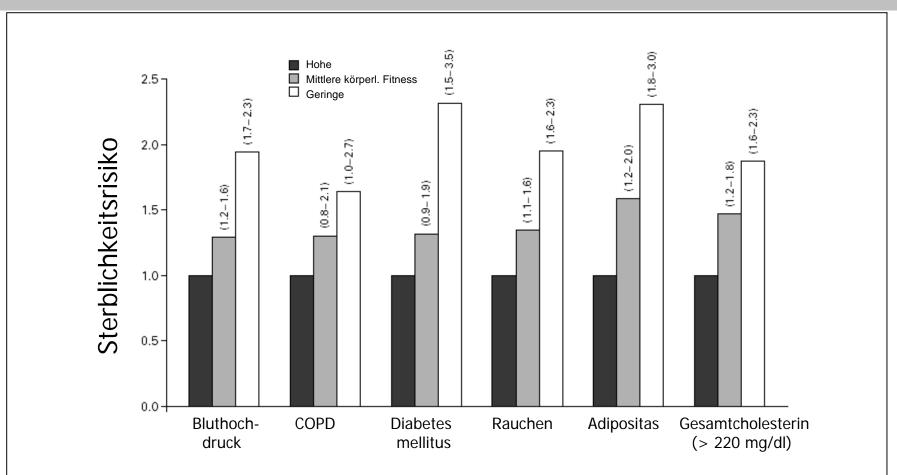
Änderungen des relativen Risikos der Gesamtmortalität durch korperliche Aktivität (Studien ab 1990): Mittelwerte und Konfidenzintervalle, in einigen Studien nur Mittelwerte verfugbar, Angaben zu Konfidenzintervallen fehlen.

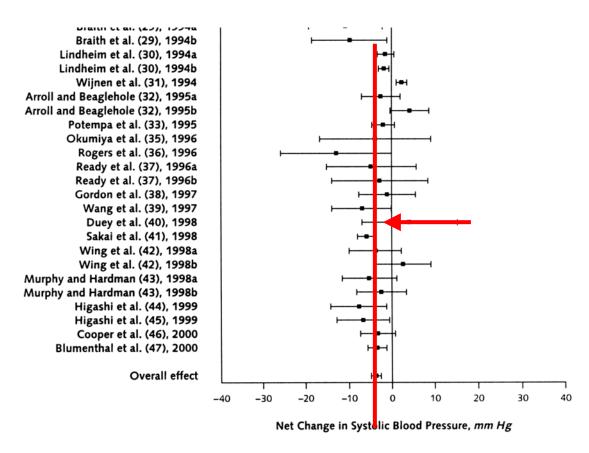
A 990

Deutsches Ärzteblatt | Jg. 100 | Heft 15 | 11. April 2003

Löllgen et al., Dt. Ärzteblatt 2003;H15

Körperliche Fitness und Sterblichkeitsrisiko bei Personen mit kardiovaskulären Risikofaktoren

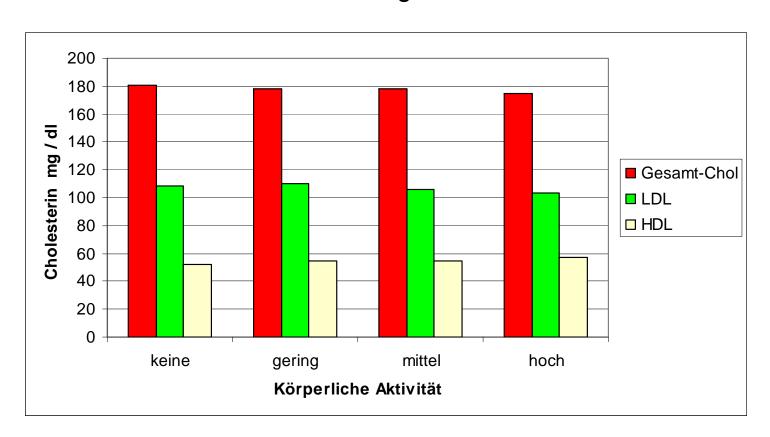



Figure 1. Relative Risks of Death from Any Cause among Subjects with Various Risk Factors Who Achieved an Exercise Capacity of Less Than 5 MET or 5 to 8 MET, as Compared with Subjects Whose Exercise Capacity Was More Than 8 MET.

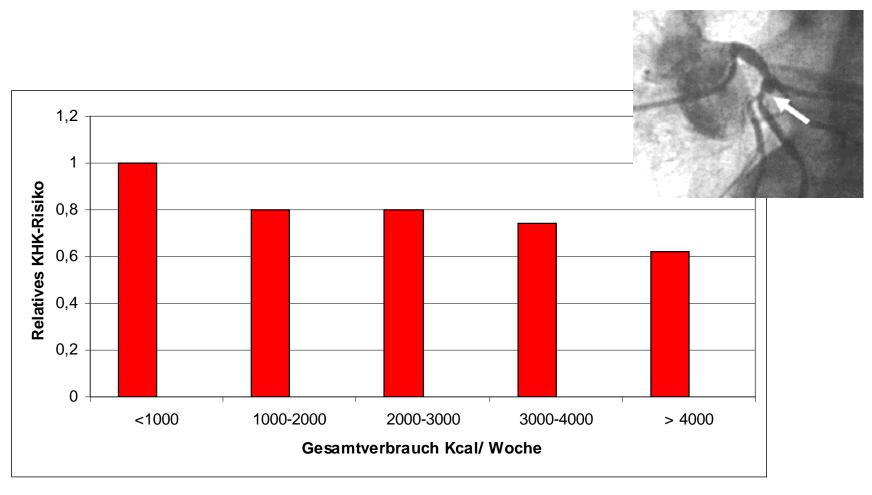
Numbers in parentheses are 95 percent confidence intervals for the relative risks. BMI denotes body-mass index, and COPD chronic obstructive pulmonary disease.

Myers et al. (2002) N Engl J Med 346: 793

Analyse von 54 Studien Einfluss von Ausdauersport auf den Blutdruck


Mittlerer systolischer Blutdruck - 3.9 mmHg, diastolischer Blutdruck - 2.6 mmHg

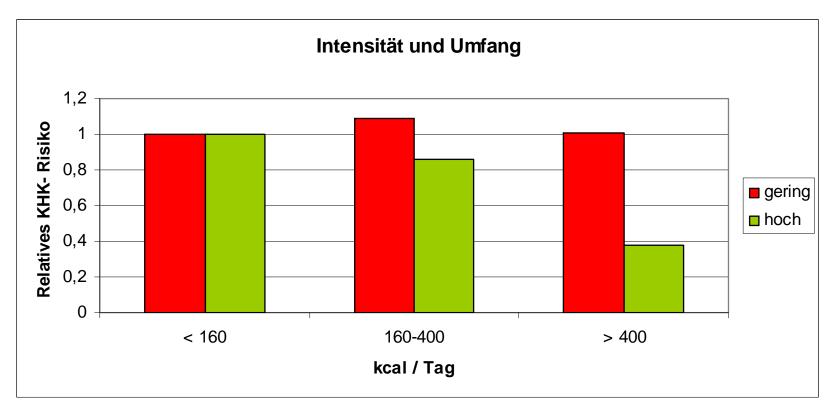
Whelton et al., Ann Intern Med. 2002;136:493-503


Körperliche Aktivität und Beeinflussbarkeit der Blutfette

2772 Probanden, Beobachtungsdauer 2 Jahre

Skoumas et al., Lipids in health and Disease 2003,2:3-10

Körperliche Aktivität und Risiko für die koronare Herzerkrankung (KHK)


Lee et al., Circulation 2000;102:981-86

Intensität der körperlichen Aktivität

1975 Männer, Beobachtungszeitraum 11 Jahre

Aktivität: Gering = Bowlen, Tanzen, Golfen

Hoch = Laufen, Radfahren

Yu et al., Heart 2003; 89:502-06

Wirksames präventivmedizinisches Training

Zusätzliche Energieumsatz durch körperliche Aktivität: mindestens 1000 kcal/Wo.

Effektivität auch kleinerer (Alltags-) Aktivitäten

aber: optimaler Effekt nur durch regelmäßige körperliche Aktivität

Empfehlung: Ausdauerorientiertes Training

3 - 5 Einheiten/Wo. Dauer: 30 - 60 min

Intensität: 50-70% der max. Leistungsfähigkeit

Obergrenze: 80-85% der individuellen maximalen

Herzfrequenz bei Ausdauerbelastungen

Zusätzliches Training von Kraft, Flexibilität und Koordination

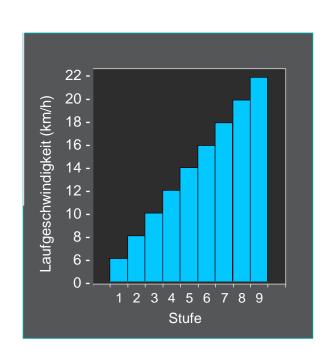
Spezielle Aspekte des Behindertensports

- Berücksichtigung spezifischer Funktionseinschränkungen durch die Behinderung
- Sekundärprobleme durch Überlastung
- Aufwändigere Organisation des Trainings
- > Behinderungsbedingt veränderte Belastungsreaktion

Spezielle Aspekte des Behindertensports

➤ Behinderungsbedingt veränderte Belastungsreaktion:

Raschere Ermüdung und Regeneration bei bestimmten Erkrankungen

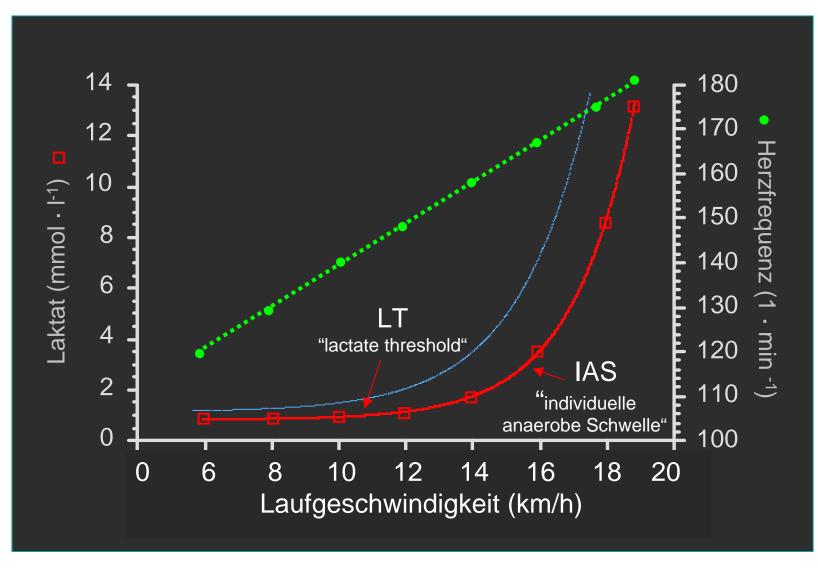

- Einfluss auf die Trainingssteuerung
- Vermeidung von Übertraining
- > Verhinderung ermüdungsbedingter Erkrankungen
- Verhinderung ermüdungsbedingter Verletzungen

Dosierung der Trainingsintensität – Die Leistungsdiagnostik

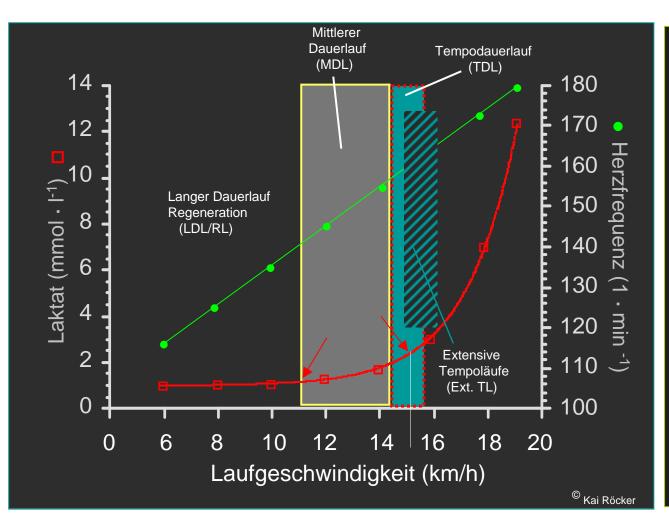
Mehrstufentest (Beispiel Laufbelastung)

z.B. Beginn 4 km/h, Increment 2 km/h, Stufendauer 3 min, Pause 20 s, Laufbandsteigung 1%

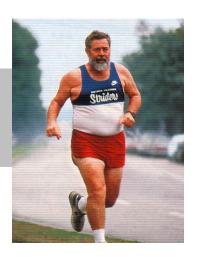
Anwendung

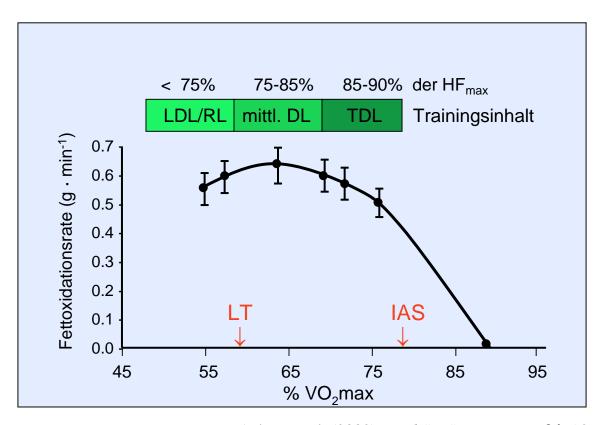

Erstellung einer Laktatleistungskurve Medizinische Fragestellungen (EKG, Blutdruckverhalten) (Eingeschränkt zur Messung der max. Sauerstoffaufnahme)

Meßvariablen


Herzfrequenz Laktat ggf. Ventilation, Atemgase (Spirometrie)

Auswertung des Mehrstufentests




Auswertung des Mehrstufentests - Trainingsempfehlungen

AUSWER	TUNG	
	Tempo He (km ·h ⁻¹) (min · 1000m ⁻¹)	
LT	11.0	143
	(5:27)	
IAS	15.2	161
	(3.57)	
- Т	rainingsempfehlur	ngen -
LDL/RL	<11.0 (> 5:27)	< 143
MDL	11.0 - 14.3 (4:12 - 5:27)	143 - 156
TDL	14.3 - 15.4 (3:52 - 4:12)	156 - 163

Gibt es eine "Fettverbrennungszone"?

Achten et al. (2002) Med Sci Sports Exerc 34: 92

Rollstuhlergometrie

- Handkurbelergometrie
- Ergometrie auf dem Rollstand
- > Ergometrie auf dem Laufband

		TP, KLIN	PP
Handkurbel	Start	10 W	20 W
	Anstieg	10 W	20 W
Rolle	Start	10 W	10 W
	Anstieg	5 W	10 W
Laufband	Start	4 km/h	6 km/h
(1,5% Steigung)	Anstieg	1 km/h	2 km/h

Belastungsmodus der Rollstuhlergometrie für Tetrapelgiker (TP), Paraplegiker (PP) und Patienten mit klinischen Fragestellungen (KLIN), jeweils in dreiminütigen Intervallen.

Vielen Dank für Ihre

Aufmerksamkeit!